replicated mecc

This commit is contained in:
2025-07-31 01:12:53 -04:00
parent 1a0425d549
commit 5a0c479c1e
21 changed files with 1304 additions and 54 deletions

150
sims/consensus.py Normal file
View File

@@ -0,0 +1,150 @@
import jax
import jax.numpy as jnp
from dataclasses import dataclass
from functools import partial
import numpy as np
class ConsensusConfig:
"""
Config class for Consensus dynamics sims
"""
num_sims: int = 500 # Number of consensus sims
num_agents: int = 5 # Number of agents in the consensus simulation
max_range: float = 1 # Max range of values each agent can take
step_size: float = 0.1 # Target range for length of simulation
directed: bool = False # Consensus graph directed?
weighted: bool = False
num_time_steps: int = 100
def consensus_step(adj_matrix: jax.Array, agent_states: jax.Array, config: ConsensusConfig):
"""
Takes a step given the adjacency matrix and the current agent state using consensus dynamics.
Parameters
-----------------------------
adj_matrix : jax.Array (num_agents, num_agents)
A jax array containing the adjacency matrix for the consensus step.
agent_states: jax.Array (num_agents)
A jax array containing the current agent state
config: ConsensusConfig
Config class for Consensus Dynamics
Returns
------------------------------
updated_agent_state: jax.Array (num_agents)
A jax array containing the updated agent state
"""
L = adj_matrix
norms = jnp.sum(jnp.abs(L), axis=1, keepdims=True)
L = L / (norms)
return (agent_states + config.step_size * jnp.matmul(L , agent_states))/(1 + config.step_size)
def generate_random_adjacency_matrix(key: jax.Array, config: ConsensusConfig):
"""
Generates a random adjacency matrix in accordance with the config.
The diagonal of the matrix is ensured to be all ones.
Parameters
--------------------
key: jax.Array
A key for jax.random operations
config: ConsensusConfig
Config for Consensus dyanmics
Returns
---------------------
adj_matrices: jax.Array (num_agents, num_agents)
Random matrix
"""
rand_matrix = jax.random.uniform(key, shape=(config.num_agents, config.num_agents))
# idxs = jnp.arange(config.num_agents)
# rand_matrix = rand_matrix.at[:, idxs, idxs].set(1)
rand_matrix = jnp.fill_diagonal(rand_matrix, 1, inplace=False) # Fill diagonal with ones
if not config.weighted:
rand_matrix = jnp.where(rand_matrix > 0.5, 1, 0)
if config.directed:
return rand_matrix
rand_matrix = jnp.tril(rand_matrix) + jnp.triu(rand_matrix.T, 1)
return rand_matrix
def generate_random_agent_states(key: jax.Array, config: ConsensusConfig):
"""
Generate a random initial state for the agents in accordance with the config.
Parameters
---------------------
key: jax.Arrray
A key for jax.random operations
config: ConsensusConfig
Config for Consensus dynamics
Returns
---------------------
rand_states: jax.Array (num_sims, num_agents)
"""
rand_states = jax.random.uniform(key, shape=(config.num_sims, config.num_agents), minval=-config.max_range, maxval=config.max_range)
return rand_states
@partial(jax.jit, static_argnames=["config"])
def run_consensus_sim(adj_mat: jax.Array, initial_agent_state: jax.Array, config: ConsensusConfig):
"""
Runs the consensus sim and returns a history of agent states.
Parameters
-------------------
adj_mat: jax.Array (num_agents, num_agents)
A jax array containing the adjacency matrix for the consensus step.
initial_agent_state: jax.Array (num_agents)
A jax array containing the initial agent state
config: ConsensusConfig
Config for Consensus dynamics
"""
# batched consensus step (meant for many initial states)
batched_consensus_step = jax.vmap(consensus_step, in_axes=(None, 0, None), out_axes=0)
def step(x_prev, _):
x_next = batched_consensus_step(adj_mat, x_prev, config)
return x_next, x_next
_, all_states = jax.lax.scan(step, initial_agent_state, None, config.num_time_steps)
return all_states.transpose(1, 0, 2)
def plot_consensus(trajectory, config):
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme()
states = np.array(trajectory)
timesteps, num_agents = states.shape
time = np.arange(timesteps)
plt.figure()
for agent_idx in range(num_agents):
plt.plot(time ,states[:, agent_idx], label=f"Agent {agent_idx}")
plt.xlabel("Timestep")
plt.ylabel("Agent statue")
plt.ylim(-config.max_range, config.max_range)
plt.title("Consensus simulation trajectories")
plt.legend()
plt.show()