added kuramoto
This commit is contained in:
		
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								__pycache__/kuramoto.cpython-312.pyc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								__pycache__/kuramoto.cpython-312.pyc
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										229
									
								
								kuramoto.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										229
									
								
								kuramoto.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,229 @@
 | 
			
		||||
import jax
 | 
			
		||||
import jax.numpy as jnp
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
from functools import partial
 | 
			
		||||
import numpy as np
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
 | 
			
		||||
# -------------------- Configuration --------------------
 | 
			
		||||
@dataclass(frozen=True)
 | 
			
		||||
class KuramotoConfig:
 | 
			
		||||
    """Configuration for the Kuramoto model simulation."""
 | 
			
		||||
    num_agents: int = 10         # N: Number of oscillators
 | 
			
		||||
    coupling: float = 1.0        # K: Coupling strength
 | 
			
		||||
    dt: float = 0.01             # Δt: Integration time step
 | 
			
		||||
    T: float = 10.0              # Total simulation time
 | 
			
		||||
    
 | 
			
		||||
    # Adjacency matrix properties
 | 
			
		||||
    normalize_by_degree: bool = True
 | 
			
		||||
    directed: bool = False
 | 
			
		||||
    weighted: bool = False
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def num_time_steps(self) -> int:
 | 
			
		||||
        """Total number of simulation steps."""
 | 
			
		||||
        return int(self.T / self.dt)
 | 
			
		||||
 | 
			
		||||
# -------------------- Core Dynamics --------------------
 | 
			
		||||
@partial(jax.jit, static_argnames=("config",))
 | 
			
		||||
def kuramoto_derivative(theta: jax.Array,        # (N,) phase angles
 | 
			
		||||
                        omega: jax.Array,        # (N,) natural frequencies
 | 
			
		||||
                        adj_mat: jax.Array,      # (N, N) adjacency matrix
 | 
			
		||||
                        config: KuramotoConfig) -> jax.Array:
 | 
			
		||||
    """
 | 
			
		||||
    Computes the derivative of the phase for each oscillator.
 | 
			
		||||
    dθ_i/dt = ω_i + (K / deg_in_i) * Σ_j A_ji * sin(θ_j - θ_i)
 | 
			
		||||
    """
 | 
			
		||||
    # Pairwise phase differences: delta[i, j] = θ_j - θ_i
 | 
			
		||||
    delta = theta[jnp.newaxis, :] - theta[:, jnp.newaxis]
 | 
			
		||||
 | 
			
		||||
    # Weighted sinusodial coupling, summing over incoming edges (hence adj_mat.T)
 | 
			
		||||
    # coupling_effects[i, j] = A_ji * sin(θ_j - θ_i)
 | 
			
		||||
    coupling_effects = adj_mat.T * jnp.sin(delta)
 | 
			
		||||
    
 | 
			
		||||
    # Sum contributions from all other oscillators for each oscillator
 | 
			
		||||
    coupling_sum = jnp.sum(coupling_effects, axis=1)
 | 
			
		||||
 | 
			
		||||
    if config.normalize_by_degree:
 | 
			
		||||
        # Normalize by the in-degree of each node
 | 
			
		||||
        # In-degree for node i is the sum of column i in adj_mat
 | 
			
		||||
        in_degree = jnp.sum(adj_mat, axis=0)
 | 
			
		||||
        # Add a small epsilon to avoid division by zero for isolated nodes
 | 
			
		||||
        coupling_sum = coupling_sum / (in_degree + 1e-8)
 | 
			
		||||
 | 
			
		||||
    return omega + config.coupling * coupling_sum
 | 
			
		||||
 | 
			
		||||
@partial(jax.jit, static_argnames=("config",))
 | 
			
		||||
def kuramoto_step(theta: jax.Array,        # (N,)
 | 
			
		||||
                  omega: jax.Array,        # (N,)
 | 
			
		||||
                  adj_mat: jax.Array,      # (N, N)
 | 
			
		||||
                  config: KuramotoConfig) -> jax.Array:
 | 
			
		||||
    """Performs a single Euler integration step of the Kuramoto model."""
 | 
			
		||||
    theta_dot = kuramoto_derivative(theta, omega, adj_mat, config)
 | 
			
		||||
    theta_next = theta + config.dt * theta_dot
 | 
			
		||||
    
 | 
			
		||||
    # Wrap phases to the interval [-π, π) for numerical stability
 | 
			
		||||
    return (theta_next + jnp.pi) % (2 * jnp.pi) - jnp.pi
 | 
			
		||||
 | 
			
		||||
# -------------------- Simulation Runner --------------------
 | 
			
		||||
@partial(jax.jit, static_argnames=("config",))
 | 
			
		||||
def run_kuramoto_simulation(
 | 
			
		||||
    thetas0: jax.Array,      # (N,) initial phases
 | 
			
		||||
    omegas: jax.Array,       # (N,) natural frequencies
 | 
			
		||||
    adj_mat: jax.Array,      # (N, N) adjacency matrix
 | 
			
		||||
    config: KuramotoConfig
 | 
			
		||||
) -> jax.Array:
 | 
			
		||||
    """
 | 
			
		||||
    Runs a full Kuramoto simulation for a given initial state.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        trajectory: (T, N) array of phase angles over time.
 | 
			
		||||
    """
 | 
			
		||||
    def scan_fn(theta, _):
 | 
			
		||||
        theta_next = kuramoto_step(theta, omegas, adj_mat, config)
 | 
			
		||||
        return theta_next, theta_next
 | 
			
		||||
 | 
			
		||||
    # jax.lax.scan is a functional loop, efficient for sequential operations
 | 
			
		||||
    _, trajectory = jax.lax.scan(
 | 
			
		||||
        scan_fn,
 | 
			
		||||
        thetas0,
 | 
			
		||||
        None,
 | 
			
		||||
        length=config.num_time_steps
 | 
			
		||||
    )
 | 
			
		||||
    return trajectory
 | 
			
		||||
 | 
			
		||||
# -------------------- Analysis Functions --------------------
 | 
			
		||||
@jax.jit
 | 
			
		||||
def phase_coherence(thetas: jax.Array) -> jax.Array:
 | 
			
		||||
    """
 | 
			
		||||
    Computes the global order parameter R, a measure of phase coherence.
 | 
			
		||||
    R = |(1/N) * Σ_j exp(i * θ_j)|
 | 
			
		||||
    
 | 
			
		||||
    Args:
 | 
			
		||||
        thetas: An array of phases, e.g., (T, N) for a trajectory.
 | 
			
		||||
    
 | 
			
		||||
    Returns:
 | 
			
		||||
        The order parameter R. If input is a trajectory, returns R at each time step.
 | 
			
		||||
    """
 | 
			
		||||
    complex_phases = jnp.exp(1j * thetas)
 | 
			
		||||
    # Mean over the agent axis (-1)
 | 
			
		||||
    return jnp.abs(jnp.mean(complex_phases, axis=-1))
 | 
			
		||||
 | 
			
		||||
@partial(jax.jit, static_argnames=("config",))
 | 
			
		||||
def mean_frequency(trajectory: jax.Array, # (T, N)
 | 
			
		||||
                   omegas: jax.Array,     # (N,)
 | 
			
		||||
                   adj_mat: jax.Array,    # (N, N)
 | 
			
		||||
                   config: KuramotoConfig) -> jax.Array:
 | 
			
		||||
    """
 | 
			
		||||
    Computes the mean frequency of each oscillator over the simulation.
 | 
			
		||||
    
 | 
			
		||||
    Returns:
 | 
			
		||||
        mean_freqs: (N,) array of mean frequencies.
 | 
			
		||||
    """
 | 
			
		||||
    # To find the mean frequency, we calculate the derivative at each point
 | 
			
		||||
    # in the trajectory and then average over time.
 | 
			
		||||
    # We can use vmap to apply the derivative function over the time axis.
 | 
			
		||||
    vmapped_derivative = jax.vmap(
 | 
			
		||||
        kuramoto_derivative,
 | 
			
		||||
        in_axes=(0, None, None, None) # Map over theta (axis 0), other args are fixed
 | 
			
		||||
    )
 | 
			
		||||
    all_derivatives = vmapped_derivative(trajectory, omegas, adj_mat, config)
 | 
			
		||||
    return jnp.mean(all_derivatives, axis=0)
 | 
			
		||||
 | 
			
		||||
# -------------------- Initialization Helpers --------------------
 | 
			
		||||
def generate_random_adjacency_matrix(key: jax.Array, config: KuramotoConfig) -> jax.Array:
 | 
			
		||||
    """Generates a single random adjacency matrix (N, N)."""
 | 
			
		||||
    N = config.num_agents
 | 
			
		||||
    shape = (N, N)
 | 
			
		||||
    
 | 
			
		||||
    if config.weighted:
 | 
			
		||||
        matrix = jax.random.uniform(key, shape)
 | 
			
		||||
    else:
 | 
			
		||||
        # Binary matrix based on a 50/50 chance
 | 
			
		||||
        matrix = (jax.random.uniform(key, shape) > 0.5).astype(jnp.float32)
 | 
			
		||||
 | 
			
		||||
    if not config.directed:
 | 
			
		||||
        # Symmetrize the matrix for an undirected graph
 | 
			
		||||
        matrix = jnp.tril(matrix) + jnp.triu(matrix.T, 1)
 | 
			
		||||
        
 | 
			
		||||
    # An oscillator is always connected to itself to avoid division by zero
 | 
			
		||||
    # if it has no other connections.
 | 
			
		||||
    matrix = jnp.fill_diagonal(matrix, 1, inplace=False)
 | 
			
		||||
 | 
			
		||||
    return matrix
 | 
			
		||||
 | 
			
		||||
def generate_initial_state(key: jax.Array, config: KuramotoConfig, 
 | 
			
		||||
                           omega_mean=0.0, omega_std=1.0):
 | 
			
		||||
    """Generates initial phases and natural frequencies."""
 | 
			
		||||
    key_theta, key_omega = jax.random.split(key)
 | 
			
		||||
    N = config.num_agents
 | 
			
		||||
    
 | 
			
		||||
    # Initial phases uniformly distributed in [0, 2π)
 | 
			
		||||
    thetas0 = jax.random.uniform(key_theta, (N,), minval=0, maxval=2 * jnp.pi)
 | 
			
		||||
    
 | 
			
		||||
    # Natural frequencies from a normal distribution
 | 
			
		||||
    omegas = omega_mean + omega_std * jax.random.normal(key_omega, (N,))
 | 
			
		||||
    
 | 
			
		||||
    return thetas0, omegas
 | 
			
		||||
 | 
			
		||||
# -------------------- Plotting --------------------
 | 
			
		||||
def plot_kuramoto_results(trajectory: np.ndarray, R_t: np.ndarray, config: KuramotoConfig):
 | 
			
		||||
    """Plots phase trajectories and the global order parameter."""
 | 
			
		||||
    
 | 
			
		||||
    T, N = trajectory.shape
 | 
			
		||||
    time = np.linspace(0, config.T, config.num_time_steps)
 | 
			
		||||
    
 | 
			
		||||
    fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
 | 
			
		||||
    
 | 
			
		||||
    # Plot 1: Phase trajectories (sin(theta) for visualization)
 | 
			
		||||
    for agent_idx in range(N):
 | 
			
		||||
        ax1.plot(time, np.sin(trajectory[:, agent_idx]), lw=1.5, label=f"Agent {agent_idx+1}")
 | 
			
		||||
    ax1.set_title("Kuramoto Oscillator Phase Trajectories")
 | 
			
		||||
    ax1.set_ylabel(r"$\sin(\theta_i)$")
 | 
			
		||||
    ax1.grid(True, linestyle='--', alpha=0.6)
 | 
			
		||||
    if N <= 10:
 | 
			
		||||
        ax1.legend(loc='upper right', fontsize='small')
 | 
			
		||||
 | 
			
		||||
    # Plot 2: Global order parameter R
 | 
			
		||||
    ax2.plot(time, R_t, color='k', lw=2)
 | 
			
		||||
    ax2.set_title("Global Order Parameter (Phase Coherence)")
 | 
			
		||||
    ax2.set_xlabel("Time (s)")
 | 
			
		||||
    ax2.set_ylabel("R(t)")
 | 
			
		||||
    ax2.set_ylim([0, 1.05])
 | 
			
		||||
    ax2.grid(True, linestyle='--', alpha=0.6)
 | 
			
		||||
    
 | 
			
		||||
    plt.tight_layout()
 | 
			
		||||
    plt.show()
 | 
			
		||||
 | 
			
		||||
# -------------------- Main Execution --------------------
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    # 1. Setup configuration and random key
 | 
			
		||||
    config = KuramotoConfig(num_agents=20, coupling=0.8, T=20)
 | 
			
		||||
    key = jax.random.PRNGKey(42)
 | 
			
		||||
    key, adj_key, state_key = jax.random.split(key, 3)
 | 
			
		||||
 | 
			
		||||
    # 2. Generate system components
 | 
			
		||||
    adj_matrix = generate_random_adjacency_matrix(adj_key, config)
 | 
			
		||||
    thetas0, omegas = generate_initial_state(state_key, config)
 | 
			
		||||
 | 
			
		||||
    # 3. Run the simulation
 | 
			
		||||
    print(f"Running Kuramoto simulation for {config.num_time_steps} steps...")
 | 
			
		||||
    trajectory = run_kuramoto_simulation(thetas0, omegas, adj_matrix, config)
 | 
			
		||||
    # Block until the computation is done to measure time accurately if needed
 | 
			
		||||
    trajectory.block_until_ready()
 | 
			
		||||
    print("Simulation complete.")
 | 
			
		||||
 | 
			
		||||
    # 4. Analyze the results
 | 
			
		||||
    R_over_time = phase_coherence(trajectory)
 | 
			
		||||
    avg_frequencies = mean_frequency(trajectory, omegas, adj_matrix, config)
 | 
			
		||||
    
 | 
			
		||||
    print("\n--- Analysis Results ---")
 | 
			
		||||
    print(f"Initial Coherence R(0): {R_over_time[0]:.4f}")
 | 
			
		||||
    print(f"Final Coherence   R(T): {R_over_time[-1]:.4f}")
 | 
			
		||||
    print("\nNatural Frequencies (ω):")
 | 
			
		||||
    print(np.asarray(omegas))
 | 
			
		||||
    print("\nMean Frequencies over Simulation:")
 | 
			
		||||
    print(np.asarray(avg_frequencies))
 | 
			
		||||
 | 
			
		||||
    # 5. Plot the results
 | 
			
		||||
    plot_kuramoto_results(np.asarray(trajectory), np.asarray(R_over_time), config)
 | 
			
		||||
							
								
								
									
										163
									
								
								test.ipynb
									
									
									
									
									
								
							
							
						
						
									
										163
									
								
								test.ipynb
									
									
									
									
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
		Reference in New Issue
	
	Block a user